

Welcome to IdentityServer4 (latest)

[image: _images/logo.png]
IdentityServer4 is an OpenID Connect and OAuth 2.0 framework for ASP.NET Core.

Warning

As of Oct, 1st 2020, we started a new company [https://duendesoftware.com/].
All new development will happen in our new organization [https://github.com/duendesoftware].
The new Duende IdentityServer is free for dev/testing/personal projects and companies or individuals with less than 1M USD gross annual revenue - for all others we have various commercial licenses that also include support and updates.
Contact [https://duendesoftware.com/contact] us for more information.

IdentityServer4 will be maintained with security updates until November 2022.

 The Big Picture

The Big Picture

Most modern applications look more or less like this:

[image: ../_images/appArch.png]
The most common interactions are:

	Browsers communicate with web applications

	Web applications communicate with web APIs (sometimes on their own, sometimes on behalf of a user)

	Browser-based applications communicate with web APIs

	Native applications communicate with web APIs

	Server-based applications communicate with web APIs

	Web APIs communicate with web APIs (sometimes on their own, sometimes on behalf of a user)

Typically each and every layer (front-end, middle-tier and back-end) has to protect resources and
implement authentication and/or authorization – often against the same user store.

Outsourcing these fundamental security functions to a security token service prevents duplicating that functionality across those applications and endpoints.

Restructuring the application to support a security token service leads to the following architecture and protocols:

[image: ../_images/protocols.png]
Such a design divides security concerns into two parts:

Authentication

Authentication is needed when an application needs to know the identity of the current user.
Typically these applications manage data on behalf of that user and need to make sure that this user can only
access the data for which he is allowed. The most common example for that is (classic) web applications –
but native and JS-based applications also have a need for authentication.

The most common authentication protocols are SAML2p, WS-Federation and OpenID Connect – SAML2p being the
most popular and the most widely deployed.

OpenID Connect is the newest of the three, but is considered to be the future because it has the
most potential for modern applications. It was built for mobile application scenarios right from the start
and is designed to be API friendly.

API Access

Applications have two fundamental ways with which they communicate with APIs – using the application identity,
or delegating the user’s identity. Sometimes both methods need to be combined.

OAuth2 is a protocol that allows applications to request access tokens from a security token service and use them
to communicate with APIs. This delegation reduces complexity in both the client applications as well as the APIs since
authentication and authorization can be centralized.

OpenID Connect and OAuth 2.0 – better together

OpenID Connect and OAuth 2.0 are very similar – in fact OpenID Connect is an extension on top of OAuth 2.0.
The two fundamental security concerns, authentication and API access, are combined into a single protocol - often with a single round trip to the security token service.

We believe that the combination of OpenID Connect and OAuth 2.0 is the best approach to secure modern
applications for the foreseeable future. IdentityServer4 is an implementation of these two protocols and is
highly optimized to solve the typical security problems of today’s mobile, native and web applications.

How IdentityServer4 can help

IdentityServer is middleware that adds the spec compliant OpenID Connect and OAuth 2.0 endpoints to an arbitrary ASP.NET Core application.

Typically, you build (or re-use) an application that contains a login and logout page (and maybe consent - depending on your needs),
and the IdentityServer middleware adds the necessary protocol heads to it, so that client applications can talk to it using those standard protocols.

[image: ../_images/middleware.png]
The hosting application can be as complex as you want, but we typically recommend to keep the attack surface as small as possible by including
authentication related UI only.

 Terminology

Terminology

The specs, documentation and object model use a certain terminology that you should be aware of.

[image: ../_images/terminology.png]

IdentityServer

IdentityServer is an OpenID Connect provider - it implements the OpenID Connect and OAuth 2.0 protocols.

Different literature uses different terms for the same role - you probably also find security token service,
identity provider, authorization server, IP-STS and more.

But they are in a nutshell all the same: a piece of software that issues security tokens to clients.

IdentityServer has a number of jobs and features - including:

	protect your resources

	authenticate users using a local account store or via an external identity provider

	provide session management and single sign-on

	manage and authenticate clients

	issue identity and access tokens to clients

	validate tokens

User

A user is a human that is using a registered client to access resources.

Client

A client is a piece of software that requests tokens from IdentityServer - either for authenticating a user (requesting an identity token)
or for accessing a resource (requesting an access token). A client must be first registered with IdentityServer before it can request tokens.

Examples for clients are web applications, native mobile or desktop applications, SPAs, server processes etc.

Resources

Resources are something you want to protect with IdentityServer - either identity data of your users, or APIs.

Every resource has a unique name - and clients use this name to specify to which resources they want to get access to.

Identity data
Identity information (aka claims) about a user, e.g. name or email address.

APIs
APIs resources represent functionality a client wants to invoke - typically modelled as Web APIs, but not necessarily.

Identity Token

An identity token represents the outcome of an authentication process. It contains at a bare minimum an identifier for the user
(called the sub aka subject claim) and information about how and when the user authenticated. It can contain additional identity data.

Access Token

An access token allows access to an API resource. Clients request access tokens and forward them to the API.
Access tokens contain information about the client and the user (if present).
APIs use that information to authorize access to their data.

 Supported Specifications

Supported Specifications

IdentityServer implements the following specifications:

OpenID Connect

	OpenID Connect Core 1.0 (spec [http://openid.net/specs/openid-connect-core-1_0.html])

	OpenID Connect Discovery 1.0 (spec [http://openid.net/specs/openid-connect-discovery-1_0.html])

	OpenID Connect RP-Initiated Logout 1.0 - draft 01 (spec [https://openid.net/specs/openid-connect-rpinitiated-1_0.html])

	OpenID Connect Session Management 1.0 - draft 30 (spec [http://openid.net/specs/openid-connect-session-1_0.html])

	OpenID Connect Front-Channel Logout 1.0 - draft 04 (spec [https://openid.net/specs/openid-connect-frontchannel-1_0.html])

	OpenID Connect Back-Channel Logout 1.0 - draft 06 (spec [https://openid.net/specs/openid-connect-backchannel-1_0.html])

OAuth 2.0

	OAuth 2.0 (RFC 6749 [http://tools.ietf.org/html/rfc6749])

	OAuth 2.0 Bearer Token Usage (RFC 6750 [http://tools.ietf.org/html/rfc6750])

	OAuth 2.0 Multiple Response Types (spec [http://openid.net/specs/oauth-v2-multiple-response-types-1_0.html])

	OAuth 2.0 Form Post Response Mode (spec [http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html])

	OAuth 2.0 Token Revocation (RFC 7009 [https://tools.ietf.org/html/rfc7009])

	OAuth 2.0 Token Introspection (RFC 7662 [https://tools.ietf.org/html/rfc7662])

	Proof Key for Code Exchange (RFC 7636 [https://tools.ietf.org/html/rfc7636])

	JSON Web Tokens for Client Authentication (RFC 7523 [https://tools.ietf.org/html/rfc7523])

	OAuth 2.0 Device Authorization Grant (RFC 8628 [https://tools.ietf.org/html/rfc8628])

	OAuth 2.0 Mutual TLS Client Authentication and Certificate-Bound Access Tokens (RFC 8705 [https://tools.ietf.org/html/rfc8705])

	JWT Secured Authorization Request (draft [https://tools.ietf.org/html/draft-ietf-oauth-jwsreq])

 Packaging and Builds

Packaging and Builds

IdentityServer consists of a number of nuget packages.

IdentityServer4 main repo

github [https://github.com/identityserver/IdentityServer4]

Contains the core IdentityServer object model, services and middleware as well as the EntityFramework and ASP.NET Identity integration.

nugets:

	IdentityServer4 [https://www.nuget.org/packages/IdentityServer4/]

	IdentityServer4.EntityFramework [https://www.nuget.org/packages/IdentityServer4.EntityFramework]

	IdentityServer4.AspNetIdentity [https://www.nuget.org/packages/IdentityServer4.AspNetIdentity]

Quickstart UI

github [https://github.com/IdentityServer/IdentityServer4.Quickstart.UI]

Contains a simple starter UI including login, logout and consent pages.

Access token validation handler

nuget [https://www.nuget.org/packages/IdentityServer4.AccessTokenValidation] | github [https://github.com/IdentityServer/IdentityServer4.AccessTokenValidation]

ASP.NET Core authentication handler for validating tokens in APIs. The handler allows supporting both JWT and reference tokens in the same API.

Templates

nuget [https://www.nuget.org/packages/IdentityServer4.Templates] | github [https://github.com/IdentityServer/IdentityServer4.Templates]

Contains templates for the dotnet CLI.

Dev builds

In addition we publish CI builds to our package repository.
Add the following nuget.config to your project:

<?xml version="1.0" encoding="utf-8"?>
 <configuration>
 <packageSources>
 <clear />
 <add key="IdentityServer CI" value="https://www.myget.org/F/identity/api/v3/index.json" />
 </packageSources>
 </configuration>

 Support and Consulting Options

Support and Consulting Options

We have several free and commercial support and consulting options for IdentityServer.

Free support

Free support is community-based and uses public forums

StackOverflow

There’s an ever growing community of people using IdentityServer that monitor questions on StackOverflow.
If time permits, we also try to answer as many questions as possible

You can subscribe to all IdentityServer4 related questions using this feed:

https://stackoverflow.com/questions/tagged/?tagnames=identityserver4&sort=newest

Please use the IdentityServer4 tag when asking new questions

Gitter

You can chat with other IdentityServer4 users in our Gitter chat room:

https://gitter.im/IdentityServer/IdentityServer4

Reporting a bug

If you think you have found a bug or unexpected behavior, please open an issue on the Github issue tracker [https://github.com/IdentityServer/IdentityServer4/issues].
We try to get back to you ASAP. Please understand that we also have day jobs, and might be too busy to reply immediately.

Also check the contribution [https://github.com/IdentityServer/IdentityServer4/blob/dev/CONTRIBUTING.md] guidelines before posting.

Commercial support

We are doing consulting, mentoring and custom software development around identity & access control architecture in general, and IdentityServer in particular.
Please get in touch with us to discuss possible options.

Training

We are regularly doing workshops around identity & access control for modern applications.
Check the agenda and upcoming public dates here [https://identityserver.io/training].
We can also perform the training privately at your company.
Contact us to request the training on-site.

AdminUI, WS-Federation, SAML2p, and FIDO2 support

There are commercial add-on products available from our partners, Rock Solid Knowledge, on identityserver.com [https://www.identityserver.com/products].

 Demo Server

Demo Server

You can try IdentityServer4 with your favourite client library. We have a test instance at demo.identityserver.io [https://demo.identityserver.io].
On the main page you can find instructions on how to configure your client and how to call an API.

 Contributing

Contributing

We are very open to community contributions, but there are a couple of guidelines you should follow so we can handle this without too much effort.

How to contribute?

The easiest way to contribute is to open an issue and start a discussion.
Then we can decide if and how a feature or a change could be implemented.
If you should submit a pull request with code changes, start with a description, only make the minimal changes to start with and provide tests that cover those changes.

Also read this first: Being a good open source citizen [https://hackernoon.com/being-a-good-open-source-citizen-9060d0ab9732#.x3hocgw85]

General feedback and discussions?

Please start a discussion on the core repo issue tracker [https://github.com/IdentityServer/IdentityServer4/issues].

Bugs and feature requests?

Please log a new issue in the appropriate GitHub repo:

	Core [https://github.com/IdentityServer/IdentityServer4]

	AccessTokenValidation [https://github.com/IdentityServer/IdentityServer4.AccessTokenValidation]

Contributing code and content

You will need to sign a Contributor License Agreement before you can contribute any code or content.
This is an automated process that will start after you opened a pull request.

Contribution projects

We very much appreciate if you start a contribution project (e.g. support for Database X or Configuration Store Y).
Tell us about it so we can tweet and link it in our docs.

We generally don’t want to take ownership of those contribution libraries, we are already really busy supporting the core projects.

Naming conventions

As of October 2017, the IdentityServer4.* nuget namespace is reserved for our packages. Please use the following naming conventions:

YourProjectName.IdentityServer4

or

IdentityServer4.Contrib.YourProjectName

 Overview

Overview

The quickstarts provide step by step instructions for various common IdentityServer scenarios.
They start with the absolute basics and become more complex -
it is recommended you do them in order.

	adding IdentityServer to an ASP.NET Core application

	configuring IdentityServer

	issuing tokens for various clients

	securing web applications and APIs

	adding support for EntityFramework based configuration

	adding support for ASP.NET Identity

Every quickstart has a reference solution - you can find the code in the
samples [https://github.com/IdentityServer/IdentityServer4/tree/main/samples/Quickstarts] folder.

Preparation

The first thing you should do is install our templates:

dotnet new -i IdentityServer4.Templates

They will be used as a starting point for the various tutorials.

Note

If you are using private NuGet sources do not forget to add the –nuget-source parameter: –nuget-source https://api.nuget.org/v3/index.json

 Protecting an API using Client Credentials

Protecting an API using Client Credentials

The following Identity Server 4 quickstart provides step by step instructions for various common IdentityServer scenarios.
These start with the absolute basics and become more complex as they progress. We recommend that you follow them in sequence.

To see the full list, please go to IdentityServer4 Quickstarts Overview [https://identityserver4.readthedocs.io/en/latest/quickstarts/0_overview.html]

This first quickstart is the most basic scenario for protecting APIs using IdentityServer.
In this quickstart you define an API and a Client with which to access it.
The client will request an access token from the Identity Server using its client ID and secret and then use the token to gain access to the API.

Source Code

As with all of these quickstarts you can find the source code for it in the IdentityServer4 [https://github.com/IdentityServer/IdentityServer4/blob/main/samples] repository. The project for this quickstart is Quickstart #1: Securing an API using Client Credentials [https://github.com/IdentityServer/IdentityServer4/tree/main/samples/Quickstarts/1_ClientCredentials]

Preparation

The IdentityServer templates for the dotnet CLI are a good starting point for the quickstarts.
To install the templates open a console window and type the following command:

dotnet new -i IdentityServer4.Templates

They will be used as a starting point for the various tutorials.

Setting up the ASP.NET Core application

First create a directory for the application - then use our template to create an ASP.NET Core application that includes a basic IdentityServer setup, e.g.:

md quickstart
cd quickstart

md src
cd src

dotnet new is4empty -n IdentityServer

This will create the following files:

	IdentityServer.csproj - the project file and a Properties\launchSettings.json file

	Program.cs and Startup.cs - the main application entry point

	Config.cs - IdentityServer resources and clients configuration file

You can now use your favorite text editor to edit or view the files. If you want to have Visual Studio support, you can add a solution file like this:

cd ..
dotnet new sln -n Quickstart

and let it add your IdentityServer project (keep this command in mind as we will create other projects below):

dotnet sln add .\src\IdentityServer\IdentityServer.csproj

Note

The protocol used in this Template is https and the port is set to 5001 when running on Kestrel or a random one on IISExpress. You can change that in the Properties\launchSettings.json file. For production scenarios you should always use https.

 Interactive Applications with ASP.NET Core

Interactive Applications with ASP.NET Core

Note

For any pre-requisites (like e.g. templates) have a look at the overview first.

 ASP.NET Core and API access

ASP.NET Core and API access

In the previous quickstarts we explored both API access and user authentication.
Now we want to bring the two parts together.

The beauty of the OpenID Connect & OAuth 2.0 combination is, that you can achieve both with a single protocol and a single exchange with the token service.

So far we only asked for identity resources during the token request, once we start also including API resources, IdentityServer will return two tokens:
the identity token containing the information about the authentication and session, and the access token to access APIs on behalf of the logged on user.

Modifying the client configuration

Updating the client configuration in IdentityServer is straightforward - we simply need to add the api1 resource to the allowed scopes list.
In addition we enable support for refresh tokens via the AllowOfflineAccess property:

new Client
{
 ClientId = "mvc",
 ClientSecrets = { new Secret("secret".Sha256()) },

 AllowedGrantTypes = GrantTypes.Code,

 // where to redirect to after login
 RedirectUris = { "https://localhost:5002/signin-oidc" },

 // where to redirect to after logout
 PostLogoutRedirectUris = { "https://localhost:5002/signout-callback-oidc" },

 AllowOfflineAccess = true,

 AllowedScopes = new List<string>
 {
 IdentityServerConstants.StandardScopes.OpenId,
 IdentityServerConstants.StandardScopes.Profile,
 "api1"
 }
}

Modifying the MVC client

All that’s left to do now in the client is to ask for the additional resources via the scope parameter. This is done in the OpenID Connect handler configuration:

services.AddAuthentication(options =>
{
 options.DefaultScheme = "Cookies";
 options.DefaultChallengeScheme = "oidc";
})
 .AddCookie("Cookies")
 .AddOpenIdConnect("oidc", options =>
 {
 options.Authority = "https://localhost:5001";

 options.ClientId = "mvc";
 options.ClientSecret = "secret";
 options.ResponseType = "code";

 options.SaveTokens = true;

 options.Scope.Add("api1");
 options.Scope.Add("offline_access");
 });

Since SaveTokens is enabled, ASP.NET Core will automatically store the resulting access and refresh token in the authentication session.
You should be able to inspect the data on the page that prints out the contents of the session that you created earlier.

Using the access token

You can access the tokens in the session using the standard ASP.NET Core extension methods
that you can find in the Microsoft.AspNetCore.Authentication namespace:

var accessToken = await HttpContext.GetTokenAsync("access_token");

For accessing the API using the access token, all you need to do is retrieve the token, and set it on your HttpClient:

public async Task<IActionResult> CallApi()
{
 var accessToken = await HttpContext.GetTokenAsync("access_token");

 var client = new HttpClient();
 client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", accessToken);
 var content = await client.GetStringAsync("https://localhost:6001/identity");

 ViewBag.Json = JArray.Parse(content).ToString();
 return View("json");
}

Create a view called json.cshtml that outputs the json like this:

<pre>@ViewBag.Json</pre>

Make sure the API is running, start the MVC client and call /home/CallApi after authentication.

Managing the access token

By far the most complex task for a typical client is to manage the access token. You typically want to

	request the access and refresh token at login time

	cache those tokens

	use the access token to call APIs until it expires

	use the refresh token to get a new access token

	start over

ASP.NET Core has many built-in facility that can help you with those tasks (like caching or sessions),
but there is still quite some work left to do.
Feel free to have a look at this [https://github.com/IdentityModel/IdentityModel.AspNetCore] library, which can automate
many of the boilerplate tasks.

 Adding a JavaScript client

Adding a JavaScript client

Note

For any pre-requisites (like e.g. templates) have a look at the overview first.

 Using EntityFramework Core for configuration and operational data

Using EntityFramework Core for configuration and operational data

In the previous quickstarts, we created our client and scope data in code.
On startup, IdentityServer loaded this configuration data into memory.
If we wanted to modify this configuration data, we had to stop and start IdentityServer.

IdentityServer also generates temporary data, such as authorization codes, consent choices, and refresh tokens.
By default, these are also stored in-memory.

To move this data into a database that is persistent between restarts and across multiple IdentityServer instances, we can use the IdentityServer4 Entity Framework library.

Note

In addition to manually configuring EF support, there is also an IdentityServer template to create a new project with EF support, using dotnet new is4ef.

 Using ASP.NET Core Identity

Using ASP.NET Core Identity

Note

For any pre-requisites (like e.g. templates) have a look at the overview first.

 Startup

Startup

IdentityServer is a combination of middleware and services.
All configuration is done in your startup class.

Configuring services

You add the IdentityServer services to the DI system by calling:

public void ConfigureServices(IServiceCollection services)
{
 var builder = services.AddIdentityServer();
}

Optionally you can pass in options into this call. See here for details on options.

This will return you a builder object that in turn has a number of convenience methods to wire up additional services.

Key material

IdentityServer supports X.509 certificates (both raw files and a reference to the Windows certificate store),
RSA keys and EC keys for token signatures and validation. Each key can be configured with a (compatible) signing algorithm,
e.g. RS256, RS384, RS512, PS256, PS384, PS512, ES256, ES384 or ES512.

You can configure the key material with the following methods:

	
	AddSigningCredential

	Adds a signing key that provides the specified key material to the various token creation/validation services.

	
	AddDeveloperSigningCredential

	Creates temporary key material at startup time. This is for dev scenarios. The generated key will be persisted in the local directory by default.

	
	AddValidationKey

	Adds a key for validating tokens. They will be used by the internal token validator and will show up in the discovery document.

In-Memory configuration stores

The various “in-memory” configuration APIs allow for configuring IdentityServer from an in-memory list of configuration objects.
These “in-memory” collections can be hard-coded in the hosting application, or could be loaded dynamically from a configuration file or a database.
By design, though, these collections are only created when the hosting application is starting up.

Use of these configuration APIs are designed for use when prototyping, developing, and/or testing where it is not necessary to dynamically consult database at runtime for the configuration data.
This style of configuration might also be appropriate for production scenarios if the configuration rarely changes, or it is not inconvenient to require restarting the application if the value must be changed.

	
	AddInMemoryClients

	Registers IClientStore and ICorsPolicyService implementations based on the in-memory collection of Client configuration objects.

	
	AddInMemoryIdentityResources

	Registers IResourceStore implementation based on the in-memory collection of IdentityResource configuration objects.

	
	AddInMemoryApiScopes

	Registers IResourceStore implementation based on the in-memory collection of ApiScope configuration objects.

	
	AddInMemoryApiResources

	Registers IResourceStore implementation based on the in-memory collection of ApiResource configuration objects.

Test stores

The TestUser class models a user, their credentials, and claims in IdentityServer.
Use of TestUser is similar to the use of the “in-memory” stores in that it is intended for when prototyping, developing, and/or testing.
The use of TestUser is not recommended in production.

	
	AddTestUsers

	Registers TestUserStore based on a collection of TestUser objects.
TestUserStore is used by the default quickstart UI.
Also registers implementations of IProfileService and IResourceOwnerPasswordValidator.

Additional services

	
	AddExtensionGrantValidator

	Adds IExtensionGrantValidator implementation for use with extension grants.

	
	AddSecretParser

	Adds ISecretParser implementation for parsing client or API resource credentials.

	
	AddSecretValidator

	Adds ISecretValidator implementation for validating client or API resource credentials against a credential store.

	
	AddResourceOwnerValidator

	Adds IResourceOwnerPasswordValidator implementation for validating user credentials for the resource owner password credentials grant type.

	
	AddProfileService

	Adds IProfileService implementation for connecting to your custom user profile store.
The DefaultProfileService class provides the default implementation which relies upon the authentication cookie as the only source of claims for issuing in tokens.

	
	AddAuthorizeInteractionResponseGenerator

	Adds IAuthorizeInteractionResponseGenerator implementation to customize logic at authorization endpoint for when a user must be shown a UI for error, login, consent, or any other custom page.
The AuthorizeInteractionResponseGenerator class provides a default implementation, so consider deriving from this existing class if you need to augment the existing behavior.

	
	AddCustomAuthorizeRequestValidator

	Adds ICustomAuthorizeRequestValidator implementation to customize request parameter validation at the authorization endpoint.

	
	AddCustomTokenRequestValidator

	Adds ICustomTokenRequestValidator implementation to customize request parameter validation at the token endpoint.

	
	AddRedirectUriValidator

	Adds IRedirectUriValidator implementation to customize redirect URI validation.

	
	AddAppAuthRedirectUriValidator

	Adds a an “AppAuth” (OAuth 2.0 for Native Apps) compliant redirect URI validator (does strict validation but also allows http://127.0.0.1 with random port).

	
	AddJwtBearerClientAuthentication

	Adds support for client authentication using JWT bearer assertions.

	
	AddMutualTlsSecretValidators

	Adds the X509 secret validators for mutual TLS.

Caching

Client and resource configuration data is used frequently by IdentityServer.
If this data is being loaded from a database or other external store, then it might be expensive to frequently re-load the same data.

	
	AddInMemoryCaching

	To use any of the caches described below, an implementation of ICache<T> must be registered in DI.
This API registers a default in-memory implementation of ICache<T> that’s based on ASP.NET Core’s MemoryCache.

	
	AddClientStoreCache

	Registers a IClientStore decorator implementation which will maintain an in-memory cache of Client configuration objects.
The cache duration is configurable on the Caching configuration options on the IdentityServerOptions.

	
	AddResourceStoreCache

	Registers a IResourceStore decorator implementation which will maintain an in-memory cache of IdentityResource and ApiResource configuration objects.
The cache duration is configurable on the Caching configuration options on the IdentityServerOptions.

	
	AddCorsPolicyCache

	Registers a ICorsPolicyService decorator implementation which will maintain an in-memory cache of the results of the CORS policy service evaluation.
The cache duration is configurable on the Caching configuration options on the IdentityServerOptions.

Further customization of the cache is possible:

The default caching relies upon the ICache<T> implementation.
If you wish to customize the caching behavior for the specific configuration objects, you can replace this implementation in the dependency injection system.

The default implementation of the ICache<T> itself relies upon the IMemoryCache interface (and MemoryCache implementation) provided by .NET.
If you wish to customize the in-memory caching behavior, you can replace the IMemoryCache implementation in the dependency injection system.

Configuring the pipeline

You need to add IdentityServer to the pipeline by calling:

public void Configure(IApplicationBuilder app)
{
 app.UseIdentityServer();
}

Note

UseIdentityServer includes a call to UseAuthentication, so it’s not necessary to have both.

 Defining Resources

Defining Resources

The ultimate job of an OpenID Connect/OAuth token service is to control access to resources.

The two fundamental resource types in IdentityServer are:

	identity resources: represent claims about a user like user ID, display name, email address etc…

	API resources: represent functionality a client wants to access. Typically, they are HTTP-based endpoints (aka APIs), but could be also message queuing endpoints or similar.

Note

You can define resources using a C# object model - or load them from a data store. An implementation of IResourceStore deals with these low-level details. For this document we are using the in-memory implementation.

 Defining Clients

Defining Clients

Clients represent applications that can request tokens from your identityserver.

The details vary, but you typically define the following common settings for a client:

	a unique client ID

	a secret if needed

	the allowed interactions with the token service (called a grant type)

	a network location where identity and/or access token gets sent to (called a redirect URI)

	a list of scopes (aka resources) the client is allowed to access

Note

At runtime, clients are retrieved via an implementation of the IClientStore. This allows loading them from arbitrary data sources like config files or databases. For this document we will use the in-memory version of the client store. You can wire up the in-memory store in ConfigureServices via the AddInMemoryClients extensions method.

 Sign-in

Sign-in

In order for IdentityServer to issue tokens on behalf of a user, that user must sign-in to IdentityServer.

Cookie authentication

Authentication is tracked with a cookie managed by the cookie authentication [https://docs.microsoft.com/en-us/aspnet/core/security/authentication/cookie] handler from ASP.NET Core.

IdentityServer registers two cookie handlers (one for the authentication session and one for temporary external cookies). These are used by default and you can get their
names from the IdentityServerConstants class (DefaultCookieAuthenticationScheme and ExternalCookieAuthenticationScheme) if you want to reference them manually.

Only the basic settings are exposed for these cookies (expiration and sliding), but you can register your own cookie handlers if you need more control.
IdentityServer uses whichever cookie handler matches the DefaultAuthenticateScheme as configured on the AuthenticationOptions when using AddAuthentication from ASP.NET Core.

Note

In addition to the authentication cookie, IdentityServer will issue an additional cookie which defaults to the name “idsrv.session”. This cookie is derived from the main authentication cookie, and it used for the check session endpoint for browser-based JavaScript clients at signout time. It is kept in sync with the authentication cookie, and is removed when the user signs out.

 Sign-in with External Identity Providers

Sign-in with External Identity Providers

ASP.NET Core has a flexible way to deal with external authentication. This involves a couple of steps.

Note

If you are using ASP.NET Identity, many of the underlying technical details are hidden from you. It is recommended that you also read the Microsoft docs [https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/] and do the ASP.NET Ide